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Abstract

Remote sensing tools are increasingly used for quantitative mapping of fluvial habi-

tats, yet few techniques exist for continuous sampling of aquatic organisms, such as

spawning salmonids. This study assessed the potential for spectrally based remote

sensing of salmon spawning locations (i.e., redds) using data acquired from unmanned

aircraft systems (UAS) along a large, gravel-bed river. We developed a novel, semi-

automated approach for detecting salmon redds by applying machine learning classi-

fication and object detection techniques to UAS-based imagery. We found that both

true colour (RGB) and hyperspectral imagery could be used to identify salmon redds,

though with varying degrees of accuracy. Redds were mapped with accuracies of

�0.75 from RGB imagery using logistic regression and support vector machines

(SVM) classification algorithms, but this type of data could not be used to identify

redds using Object-based Image Analysis (OBIA). The hyperspectral imagery was

more useful for mapping salmon redds, with accuracies greater than 0.9 for both

logistic regression and SVM classifiers; OBIA of the hyperspectral data resulted in

redd detection accuracies up to 0.86. The hyperspectral imagery also yielded comple-

mentary physical habitat information including water depth and substrate composi-

tion, which we quantified on the basis of a spectrally based chlorophyll absorption

ratio. Overall, the hyperspectral imagery more effectively identified salmon spawning

locations than RGB images and was more conducive to the classification approaches

we evaluated. Each type of remotely sensed data had advantages and limitations,

which are important for potential users to understand when incorporating UAS-

based data collection into river ecosystem studies.
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1 | INTRODUCTION

River ecosystems are structured by physical and biological processes

operating over a range of spatial and temporal scales (Beechie

et al., 2010). Characterizing variability in riverine landscapes, or river-

scapes, is critical for understanding how organisms interact with

habitat and for improving management and conservation of anadro-

mous salmonids (Fausch, Torgersen, Baxter, & Li, 2002). Recent

advances in fluvial remote sensing facilitate quantitative mapping of

riverscapes and a number of new tools enable spatially continuous

sampling of habitat throughout entire river systems (Carbonneau,

Fonstad, Marcus, & Dugdale, 2012). For example, various remote
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sensing methods have been developed to quantify the fundamental

attributes of river corridors, as well as channel change, from reach to

regional scales using satellite, airborne, or ground-based acquisitions

(Piegay et al., 2020). These remote sensing tools provide a means of

characterizing the physical habitat of rivers, which forms the basic

template for salmonids during their freshwater life-stages. However,

comparable remote sensing techniques for continuously sampling

aquatic biota, such as spawning salmonids, are generally lacking.

Pacific salmon (Oncorhynchus spp.) have complex life histories and

inhabit a range of riverine habitat types over the course of their lives.

During spawning, salmon migrate to natal rivers in search of habitat

suitable for reproduction. Female salmon typically select spawning

sites where they can construct redds in areas with suitable water

depth, velocity (Moir & Pasternack, 2008), substrate size (Riebe, Sklar,

Overstreet, & Wooster, 2014), channel morphology (Hanrahan, 2007),

and hyporheic flows (Geist & Dauble, 1998). Once a female salmon

identifies a suitable spawning location, she uses her tail to dig a redd

(i.e., nest) in gravel and deposits her eggs in the substrate. A com-

pleted redd consists of a pot, which is the upstream depression

resulting from female digging, and a tailspill, which is where the

excavated gravel is stored on the downstream end of the redd.

The completed redds are often brighter and visually distinct from the

undisturbed substrate.

The number of redds constructed in a river is an important indica-

tor of overall spawner abundance and salmon redds are also a common

metric used to evaluate river restoration performance. Redd counts can

provide insight on how spawning salmon utilize available habitat across

a riverscape, which can help inform species management efforts

(Fausch et al., 2002). Spatially and temporally continuous redd sampling

has been used to assess patterns in spawning activity and population

trends at the river network scale (Isaak & Thurow, 2006). When

detailed geospatial information on redd locations is available,

redd mapping combined with hydraulic habitat modelling can be used

to examine controls on salmon spawning preferences in natural

(Benjankar, Tonina, Marzadri, McKean, & Isaak, 2016) and restored

river reaches (Harrison et al., 2019). While the value of redd count data

is widely recognized in salmon population assessments (Gallagher,

Hahn, & Johnson, 2007), fine-scale spatial data on individual salmon

spawning locations are often unavailable (Lapointe, 2012), thus creating

a need for improved tools to effectively map salmon redds across a

range of spatial scales.

Traditional redd mapping approaches involve manual surveys con-

ducted by wading in shallow channels where flow conditions permit or

by using boats on deeper river channels (Gallagher & Gallagher, 2005).

On larger rivers, redds have been mapped from aerial imagery

obtained from fixed-wing aircraft (Geist & Dauble, 1998) and through

visual counts made by observers during helicopter flights (Isaak &

Thurow, 2006). These conventional methods of redd mapping are sub-

ject to several important limitations, however. For example, ground sur-

veys are time consuming and tend to be conducted over short spatial

extents, providing limited spatial information on where salmon choose

to spawn. Ground surveys are also dependent on river discharge and

may not be feasible during high flows. Remote sensing techniques can

help overcome these limitations by providing greater spatial coverage

and higher resolution, essentially continuous information on river corri-

dors (Tomsett & Leyland, 2019). However, remotely sensed imagery

acquired from manned aircraft are expensive and require flight planning

coordination with contractors, limiting the ability to rapidly collect imag-

ery once salmon spawning begins. While a number of image-based tech-

niques have been developed to map river corridors (Hugue, Lapointe,

Eaton, & Lepoutre, 2016; Legleiter, Roberts, & Lawrence, 2009), remote

sensing imagery commonly has pixels on the order 1–2 m2, which may

be too coarse to identify salmon redds, which have characteristic areal

extents of roughly 10 m2 (Bjornn & Reiser, 1991). Redd mapping via tra-

ditional fixed-wing aircraft and helicopters may also involve substantial

human risk (Groves, Alcorn, Wiest, Maselko, & Connor, 2016). Further-

more, while manned aircraft provide broader spatial coverage, disparities

might exist between visual redd counts made during manned aircraft

flights and those derived from analysis of aerial imagery (Visser,

Dauble, & Geist, 2002).

Unmanned aircraft systems (UAS) represent an appealing alterna-

tive to these traditional field methods and remote sensing approaches

that potentially could be used to identify redds. For example, because

UAS can be deployed from low altitudes and travel slowly or even

hover, these platforms can acquire images with sufficiently high spa-

tial resolution to identify small-scale features like isolated salmon

redds. UAS have emerged as a means for characterizing river bathym-

etry in small rivers using Structure-from-Motion (SfM) photogramme-

try techniques (Dietrich, 2017) and in larger river channels using

Optimal Band Ratio Analysis (OBRA) (Legleiter & Harrison, 2019).

UAS also have been used to effectively characterize fluvial habitats

based on classification systems (Woodget, Visser, Maddock, &

Carbonneau, 2016) or hydraulic habitat modelling (Tamminga,

Hugenholtz, Eaton, & Lapointe, 2015). Groves et al. (2016) used video

obtained from UAS to visually identify salmon redds along the Lower

Snake River in Idaho, USA, and found that UAS-based redd counts

were more accurate than redd counts obtained by observers onboard

manned helicopter flights. Roncoroni and Lane (2019) developed a

UAS-based technique to identify salmon redds using SfM-derived dig-

ital elevation models (DEMs) of difference and reported that their

approach detected redds that were not captured by visual observa-

tions. Despite increased interest in UAS applications, these platforms

remain an underutilized tool in salmon habitat studies (Harris, Nelson,

Rieucau, & Broussard, 2019) and comparative evaluations of different

UAS platforms, sensors, and image classification techniques are

needed (Buters et al., 2019).

The goal of this study was to assess the potential for spectrally

based remote sensing of salmon redds on a large, gravel-bed river.

We developed a novel, semi-automated approach for detecting

salmon redds by applying machine learning and object detection

techniques to UAS-based imagery. We acquired true color (red,

green, blue, or RGB) and hyperspectral imagery from small UAS and

tested the redd mapping performance of two classification algorithms

and an object detection technique. The performance of the various

redd identification approaches was evaluated by comparing redd

locations obtained from the imagery with salmon spawning locations
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identified through ground surveys. All of the remotely sensed

data and field measurements used in this study are available through

a data release published by the U.S. Geological Survey (USGS)

ScienceBase Catalog (Legleiter & Harrison, 2020).

2 | METHODS

2.1 | Study area

The American River is a tributary to the Sacramento River located in

California's Central Valley (Figure 1) and has a total drainage area of

5,085 km2. The lower American River supports two runs of Pacific

salmon, including fall-run Chinook salmon (Oncorhynchus tshawytscha)

and steelhead (Oncorhynchus mykiss; Moyle, Lusardi, Samuel, &

Katz, 2017). Water discharge on the lower American River is regulated

by Folsom and Nimbus Dams, which are located 48 and 37 km

upstream from the confluence with the Sacramento River, respec-

tively. The mean annual discharge measured 0.7 km downstream from

Nimbus Dam at the U.S. Geological Survey (USGS) gage near Fair

Oaks, CA (# 11446500) since dam closure in 1955 is 104 m3/s. Regu-

lation of the lower American has altered the natural flow regime by

reducing winter and spring peak and pulse flows while increasing sum-

mer base flows (Beakes et al., 2014). Nimbus Dam is a passage barrier

to upstream adult migration, preventing access to roughly 214 km

of historically accessible habitat (Yoshiyama, Gerstung, Fisher, &

Moyle, 2001). Salmon currently spawn in a �30 km segment of the

river downstream from Nimbus Dam.

Remotely sensed imagery obtained from manned aircraft have

been used to map salmon redds on the American River for over

15 years. Historically, RGB imagery over a �30 km river segment

downstream from Nimbus Dam has been acquired two or three

times each year during the fall-run Chinook spawning season

(November to mid-December). Salmon redds are manually mapped

from the imagery by visually identifying individual redds and these

counts support system-wide estimates of the total redd abundance

and distribution. Based on aerial redd counts from 2004 to 2016,

the number of fall-run Chinook redds identified in the American

River averaged roughly 3,000 per year (Hannon, 2017). In addition,

redd counts are conducted in targeted reaches by wading, using jet

F IGURE 1 (a) Location of the American River in northern California, USA. (b) Oblique image of the study reach immediately downstream of
Nimbus Dam. (c) RGB water-only image with field-based depth measurements overlain. Terrestrial areas are represented by a hillshade image
produced from LiDAR topography. (d) Locations of salmon redds mapped in the field [Colour figure can be viewed at wileyonlinelibrary.com]
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boats, or snorkeling; redd locations are surveyed using global posi-

tioning systems (GPS), where possible. While the overall approach

provides an effective means of counting redds along the American

(Zeug et al., 2014), the field surveys are time consuming and limited

to short river reaches. Moreover, at times redd locations cannot be

surveyed due to hazardous river conditions. Although aerial surveys

provide a large-scale view of the river, manned flights are expensive

and their utility for redd mapping depends on atmospheric condi-

tions and river visibility at the time the images are acquired. Further-

more, disparities may exist between redd counts obtained from

visual surveys compared to counts derived from analysis of aerial

imagery (Visser et al., 2002). Ongoing efforts to monitor salmon pop-

ulation abundance and habitat enhancement project effectiveness

on the American River rely on accurate redd counts, however, creat-

ing a compelling need to evaluate alternative approaches for remote

sensing of salmon redds.

To gain insight regarding the potential for mapping salmon redds

via UAS, we acquired remotely sensed data and field measurements

along the lower American River. The study site was located immedi-

ately below Nimbus Dam (38.64�N, 121.22�W), in a reach referred to

as Nimbus Basin, which has an upstream drainage area of 4,887 km2.

The Nimbus Basin study reach has a wide channel, minimal riparian

vegetation, and clear water conditions, implying that the river might

be characterized effectively via remote sensing. The study reach is an

area of recent salmon habitat enhancement and gravel augmentation

and features constructed mid-channel islands that divide the flow

into a mainstem channel with pool-riffle morphology and a side chan-

nel connected to the adjacent floodplain (Figure 1b). The study reach

was approximately 275 m long, had a mean wetted width of roughly

100 m, a mean depth of 0.98 m, and a water surface slope of

0.002 m/m at the time of image acquisition. The river bed sediment is

composed of gravels and cobbles, which at the time of our surveys

were coated with varying degrees of periphyton. All surveys were

conducted during the fall-run Chinook salmon spawning season in

November 2018 at a constant river discharge of 53.8 m3/s.

2.2 | Field measurements

We mapped fall-run Chinook salmon redds using real-time kinematic

(RTK) GPS receivers. Our surveys were conducted during the early

stages of spawning activity observed on the American River in

November 2018 and we mapped 21 newly constructed redds

in areas that could be safely waded. While steelhead also spawn in

the American River, their peak spawning activity occurs in January

through April, thus they were not present during our spawning sur-

veys. We identified fall-run Chinook salmon redd locations based on

the distinctive pot/tailspill topography and the presence of disturbed

sediment overturned by spawning fish. Redds that were under con-

struction during our field campaign but were only partially completed

were not included in our ground surveys.

Fall-run Chinook salmon tend to spawn in shallow water depths

(0.2–0.8 m) but not in deeper pools (Moir & Pasternack, 2010).

Therefore, in addition to using the imagery to detect salmon redds,

we developed a water depth map (see Section 2.4) to identify shallow

water and exclude areas that exceeded typical spawning depths. We

measured water depths by using RTK GPS to survey the water surface

elevation along the edge of the channel and bed elevations in areas

of the river that could be safely waded; depths were estimated by

subtracting each bed elevation from the nearest water surface eleva-

tion point. For the deeper parts of the channel we used a jet boat

equipped with an acoustic Doppler current profiler (ADCP). The

ADCP collected depth measurements at a sampling frequency of 1 Hz

and the spatial position of each depth measurement was obtained

from an integrated differential GPS receiver with a horizontal accu-

racy of approximately 0.15–0.2 m.

Completed salmon redds have an elliptical shape and often

appear brighter than the surrounding, undisturbed substrate because

the recently exposed bed surface within a redd lacks algae (Gallagher

et al., 2007). To facilitate development of an image-based technique

for identifying bright areas of the bed devoid of algae, we acquired

ground-based reflectance data (i.e., field spectra) over 20 salmon

redds and on 20 adjacent, undisturbed substrates. These data were

collected using a FieldSpec HandHeld spectroradiometer (Analytical

Spectral Devices, Inc., or ASD) that measured upwelling spectral radi-

ance from 400 to 900 nm and was operated in reflectance mode via

periodic measurements of a white reference panel. We analysed the

field spectra to assess whether salmon redds had a unique spectral

signature, relative to the undisturbed substrate, that could be identi-

fied in the hyperspectral imagery. Our analysis indicated that clean

substrates lacking periphyton could be identified using a chlorophyll

(ch) absorption ratio described further in Section 3.1. We chose to

focus on mapped water depth and ch absorption ratios for detecting

redds, as these predictors can help identify clean substrates located in

shallow water. While water velocity, substrate size, and hyporheic

flow also might be useful predictors of salmon redd locations, map-

ping these variables from the available imagery was beyond the scope

of this investigation.

2.3 | UAS image acquisition and processing

We acquired UAS-based RGB and hyperspectral imagery and evalu-

ated the potential utility of each data set for detecting redds. RGB

imagery was acquired using a DJI Matrice 210 equipped with

a Zenmuse X4S optical camera (DJI, 2020). The Matrice 210 is a

four-rotor platform with a maximum payload capacity of 1.9 kg.

We planned flight paths for the Matrice 210-Zenmuse UAS using

DroneDeploy (DroneDeploy, 2020), with imagery collected along

several parallel flight lines to ensure full coverage of the study reach.

The Matrice 210-Zenmuse UAS was depolyed at a flying height of

75 m above ground level, with an average flight speed of 5 m/s.

Raw Zenmuse images were georeferenced using RTK GPS and iner-

tial motion unit (IMU) data recorded onboard the UAS and individual

flight strips were combined into an orthorectified mosaic using

Agisoft Metashape (Version 1.6.1; Agisoft, 2020). The resulting
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orthoimage had a pixel size of 0.15 m (Table 1). The georeferenced

RGB orthoimage was accurately co-registered with 19 surveyed gro-

und control points (GCPs), with a root-mean-square error (RMSE)

of 0.05 m.

The hyperspectral image was acquired using a DJI Matrice

600 with an integrated Nano-Hyperspec imaging system (Headwall

Photonics, 2020a), which we refer to as the Nano. The larger Matrice

600 is a six-rotor platform with a maximum payload capacity of 6 kg.

The Nano imagery acquired in this study had 252 spectral bands span-

ning the visible and near-infrared wavelength (λ) range from 398 to

956 nm. The Nano sensor is a pushbroom instrument that collects

one row of cross-track spatial pixels per scan line as the platform

moves forward during flight, with each pixel containing full spectral

data. The Matrice 600-Nano UAS was depolyed at a flying height of

119 m above ground level, with an average flight speed of 1 m/s. The

lower flight speed used for the Matrice 600-Nano UAS was designed

to increase the image exposure time. We planned flight paths for the

Matrice 600-Nano UAS using Universal Ground Control Software

(UgCS, 2020). Hyperspectral imagery was obtained along parallel flight

paths and raw flight strips were georeferenced using data from an

onboard GPS and IMU and then combined into an orthoimage using

Spectral-View version 5.5.1 (Headwall Photonics, 2020b) We applied

calibration coefficients provided by Headwall, the Nano manufacturer,

to convert digital numbers to radiance and then used a calibration tarp

placed on the ground as an in-scene white reference to produce a

final reflectance image. The initial hyperspectral orthoimage had poor

alignment with field-surveyed GCPs and additional georeferencing

was required to improve horizontal accuracy. We used ENVI software

tools to perform image to image registration with the RGB orthoimage

as the base. This process greatly improved coregistration between the

images comprising the mosaic and with our field-surveyed GCPs. The

final hyperspectral orthoimage had a RMSE of 0.77 m, relative to our

surveyed GCPs.

2.4 | Water depth retrieval

To assist in identifying shallow regions of the channel conducive

to redd building, we mapped water depth using the Optimal

Band Ratio Analysis (OBRA) framework established through previous

research on similar rivers (Legleiter et al., 2009; Legleiter &

Harrison, 2019). Only a brief overview of OBRA is provided here

and greater detail can be found in the original publications. Depths

were estimated from the image data based on relationships between

depth d and reflectance R(λ) expressed in terms of the image-derived

quantity

X = ln
R λ1ð Þ
R λ2ð Þ

� �
, ð1Þ

where R(λ1) and R(λ2) are reflectances in the pair of wavelengths

selected via OBRA, which regresses field measurements of d versus

X values for all possible band combinations. The optimal band ratio is

that which yields the highest regression R2. In this study, we included

an X2 term in the regression against d to improve depth retrieval in

the deeper water (Legleiter & Overstreet, 2012).

2.5 | Image classification

As an alternative to visually identifying salmon redds from the UAS

imagery, we sought to develop and test a semi-automated workflow

that would be repeatable and less subjective than current redd detec-

tion methods (Figure 2). To pursue this objective, we developed

10 raster stacks, which included a combination of the original image

bands and depth and ch ratio predictors derived from the images. For

the RGB imagery, we used two sets of redd location predictors: the

raw RGB data and the RGB image bands combined with a water depth

map produced via OBRA. For the hyperspectral imagery, we evaluated

three sets of image-based predictors. First, we used eight spectral

bands resampled from the original hyperspectral data to match the

visible and near-infrared (425–910 nm) bands of the WorldView-3

(WV3) satellite. We used a subset of the full 252 available spectral

bands to reduce computational time during the redd classification

procedure. The second set of hyperspectral predictors included

the eight WV3 bands plus a depth map derived via OBRA of the

same eight bands. The third set of hyperspectral predictors included

the eight WV3 spectral bands, depth derived via OBRA of the original

252-band hyperspectral image, and ch absorption ratio values.

We paired field-surveyed redd locations with the raster stacks

derived from the RGB and hyperspectral imagery to develop image-

based redd classifications. We developed a training data set by manu-

ally digitizing points within the perimeter of each field-mapped redd

(n = 300) and generated an equivalent number of random points from

other areas in the images that were not used for spawning. We

extracted pixel values for redd and non-redd locations from each ras-

ter stack and used them as input to two binary classification tech-

niques: logistic regression and support vector machines (SVMs). We

randomly selected 25% of the training data to use for model valida-

tion, developed classification models using the remaining 75% of the

data and evaluated the performance of each classifier using the with-

held validation data. The classifiers were used to develop redd proba-

bility maps in which each pixel in the image was assigned a probability

TABLE 1 Summary of UAS data sets acquired on the American River, CA

Acquisition dates Data type Platform Sensor Height (m) Pixel size (m) Bands Wavelengths (nm)

November 5–7, 2018 RGB Matrice 210 Zenmuse X4S 75 0.15 3 480–660

November 5–7, 2018 Hyperspectral Matrice 600 Nano-Hyperspec 119 0.15 252 398–956
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of containing a redd, with probabilities ranging from zero to one. We

examined the quality of predictions made by the two classifiers on the

validation data by computing classification accuracy, precision, and

recall. Accuracy can be interpreted as the proportion of correct predic-

tions made by the classifier, precision is the ability of a classifier not to

misclassify a negative sample (non-redd) as positive (redd), and recall is

the ability of the classifier to identify all of the positive samples.

We used the redd probability maps derived from the two classi-

fiers to test a semi-automated, Object-based Image Analysis (OBIA)

approach to detect redds using the ENVI feature extraction tool

(Harris Geospatial, 2008). OBIA involves image segmentation, seg-

ment classification, and generalization based on spectral, spatial, and

textural characteristics. We used OBIA to segment redd probability

maps into regions of pixels, computed attributes for each region to

create objects, and then classified the objects with a nearest neigh-

bour classifier to represent the boundaries of individual redds as vec-

tor polygons. The potential advantage of incorporating OBIA into

the redd mapping workflow was that it provided vector polygons for

each individual redd, thereby obviating the need to manually decide

whether a given cluster of image pixels was a redd. Although OBIA

could have been applied to the raw imagery, this approach would

have required developing rules for each image data set, whereas using

the redd probability maps allowed us to conduct OBIA using a single

input raster. We performed a sensitivity analysis of OBIA predictions

by varying the redd probability threshold between 0.1 and 0.9 in 0.1

increments and calculating the accuracy, precision, and recall for each

threshold.

3 | RESULTS

3.1 | Quantifying water depth and substrate
optical properties

This study examined the potential for spectrally based remote sensing

to identify salmon redds. To achieve this objective, we acquired UAS-

based RGB and hyperspectral imagery, measured water depths and

field spectra, and used the field data to develop maps of water depth

and a chlorophyll (ch) absorption ratio for use as image-based predic-

tors of redd occurrence. Results from the depth retrieval analysis for

the RGB, 8-band, and 252-band images are summarized in Figure 3.

For the RGB imagery, quadratic OBRA did not result in accurate

depth retrieval (Figure 3a,d). Defining X using 660 and 480 nm as the

numerator and denominator, respectively, resulted in an R2 of 0.45

F IGURE 2 Schematic representation of the overall redd mapping workflow developed in this study, which includes: (1) acquiring UAS-based
hyperspectral image data (shown as a false-colour composite) and RGB imagery; (2) resampling the hyperspectral image data from 252 to eight
spectral bands; and (3) producing a map of the chlorophyll (ch) absorption ratio from the 252-band hyperspectral image and maps of water depth
from the 252-, 8-, and 3-band images. These image-derived products were then used to classify redds using machine learning techniques [Colour
figure can be viewed at wileyonlinelibrary.com]
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and standard error of 0.29 m (Figure 3a,d) for the X versus d calibra-

tion relationship. The depth map produced from the RGB imagery

tended to homogenize predicted depths, without capturing the spatial

variation between shallow and deep regions of the river. We con-

cluded that the RGB sensor used in this study did not provide useful

depth information and we did not include water depth maps derived

from the RGB imagery as predictors in subsequent redd classification

analyses.

OBRA of the Nano data spectrally resampled to the eight WV3

bands yielded more accurate depth retrieval. Defining X using

480 and 723 nm in the numerator and denominator, respectively,

resulted in an R2 of 0.72 and a standard error of 0.21 m in the X

versus d calibration relation (Figure 3b,e). Depth estimates were gen-

erally accurate for depths between 0.25 and 1.4 m, but depths tended

to be over-predicted in shallow areas and under-predicted in deeper

pools due to the use of a quadratic X versus d relation (Figure 3e).

The most accurate depth estimates were obtained using the full

252-band hyperspectral image. Defining X using 571 and 696 nm in

the numerator and denominator, respectively, yielded an R2 of 0.87

and a standard error of 0.16 m for the X versus d calibration relation

(Figure 3c,f). The OBRA matrix shown in Figure 3c indicated that in

addition to the optimal band ratio, several other wavelength combina-

tions would have produced an X versus d relation nearly as strong.

Moreover, the X versus d relation developed using the full 252-band

image (Figure 3f) did not lead to the same biases of over-predicting

shallow depths and under-predicting deeper depths that resulted from

OBRA of the resampled eight-band Nano image (Figure 3e). Depth

maps for both the original and resampled Nano data sets effectively

captured spatial variations in water depth and were included as pre-

dictor variables in redd classification analyses.

Figure 4a shows the difference in brightness between the buried

and exposed surfaces of a gravel particle that has been flipped on its

side, as occurs when a female salmon disturbs the bed during redd

construction. This photograph illustrates how the exposed surface is

covered with periphyton whereas the buried surface lacks periphyton

prior to disturbance, resulting in a pronounced difference in bright-

ness between the two faces of the particle. Figure 4b provides an

example of field spectra measured over the redd pot and tailspill, as

well as over an adjacent undisturbed substrate. These field spectra

captured a strong absorption feature (i.e., drop in reflectance) at a

wavelength of 675 nm for the undisturbed substrate due to the pres-

ence of chlorophyll (ch). Similar ch absorption features at 675 nm

were evident in field spectra collected from periphyton-covered sub-

strates in an experimental outdoor stream channel (Legleiter &

Overstreet, 2014). The same decrease in reflectance at 675 nm was

not present in the field spectra from the salmon redd, however,

because some of the gravel on the bed had been overturned to

expose fresh surfaces that lacked periphyton (Figure 4b).

F IGURE 3 OBRA output for (a) RGB, (b) 8-band and (c) 252-band images. The corresponding X versus d relationships for each type of image
are shown in (d-f) [Colour figure can be viewed at wileyonlinelibrary.com]
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To quantify and exploit this difference in measured reflectance

between redd and non-redd areas, we defined a ch absorption ratio as

R(689)/R(675) and used this simple index as a predictor for identifying

salmon redds from the hyperspectral imagery. These ch ratio maps

indicated that redds tended to have a ch ratio roughly equal to 1 and

non-redd areas colonized by periphyton had ch ratios greater than 1.

Examples of individual redds can be seen in the ch ratio map as white

ellipses (Figure 2); these areas generally coincided with our field-

surveyed redd locations.

3.2 | Spectrally based redd classification

Redd classifications derived using eight different candidate models

are shown in Figure 5 and a summary of the accuracy, precision, and

recall of each model is provided in Table 2. Redd probabilities for indi-

vidual (0.15 m) pixels are shown in each panel of Figure 5, where cool

colours represent a low predicted redd probability and warm pixels

represent a high predicted redd probability. For the RGB imagery,

both logistic regression and SVM classifiers predicted moderate to

F IGURE 4 (a) Photograph of submerged gravel particle, illustrating the clean, buried surface, which lacks periphyton prior to disturbance by
redd building versus the exposed surface, which contains periphyton prior to disturbance. (b) Field spectra collected over redd pot, tail and
undisturbed substrates. Note the absorption by chlorophyll (ch) on the undisturbed substrates due to the presence of perihyton, which is not

present in the redd spectra [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 Predicted redd probabilities using logistic regression (top) and SVM (bottom) classification algorithms. A scale bar is provided in
Figure 1 for reference [Colour figure can be viewed at wileyonlinelibrary.com]
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high redd probabilities in the shallow channel margins, with few if any

redds predicted in the main channel along the northern portion of the

project reach. Areas with predicted redds occurred as large, continu-

ous zones, but few isolated redds on the scale of the field-surveyed

redds, which were on the order of �10 m2, were predicted (Figure 5a,

e). The RGB-based redd predictions had accuracies of 0.76 for both

logistic regression and SVM classifiers, respectively (Table 2). Both

classifiers had high precision, indicating that non-redd areas were gen-

erally classified correctly. Recall values for the RGB data sets were

0.77 and 0.73 for the two classifiers, indicating a tendency to mis-

classify a portion of redds as non-redds.

Relative to the RGB imagery, the Nano hyperspectral image

generally yielded more reliable predictions of where spawning salmon

constructed redds. In particular, classifications based on the Nano

imagery more effectively predicted isolated clusters of pixels with

high redd probabilities, in contrast to the large swaths of high redd

probability predicted from the RGB imagery. These patterns were in

agreement with our field-mapped redds, which consisted of isolated

circular or elliptical redds. Accuracies for each of the six candidate

hyperspectral models were high for both the SVM and logistic regres-

sion classifiers. In general, the precision was greater than or equal to

the accuracy and recall, indicating that non-redd areas were rarely

classified as redds (Table 2). In several instances, true redds were

omitted from the classification, which reduced the accuracy and recall

values. Nevertheless, all accuracy, precision, and recall values for the

Nano imagery exceeded 0.9, indicating that both logistic regression

and SVM machine learning techniques effectively classified redds.

3.3 | Object-based redd identification

Using the redd probability maps (Figure 5) as input, we used OBIA to

delineate individual redds for each of the eight candidate models listed

in Table 2. The OBIA approach did not effectively define individual redds

from the RGB redd probability maps. We attributed this result to the

tendency for both logistic regression and SVM classifiers to over-predict

the areal extent of potential redds (Figure 5a,e) rather than identifying

smaller-scale features with more realistic areal extents of �10 m2.

Examples of the OBIA-derived redd polygons for Models 6–8 are

shown in Figure 6 for an area located at the head of the side channel

where six redds were mapped in the field. Model 6, which used redd

probabilities derived from the eight-band image, identified the general

perimeters of the six field-mapped redds, though the polygons were

merged into three large polygons due to poor edge detection between

redds (Figure 6a). Model 7, which included eight-band imagery and

depth (Figure 6b), and Model 8, which included eight-band imagery,

depth and ch ratio (Figure 6c), identified all six of the field-mapped

redds, with clearer distinctions between individual predicted redds

and the corresponding OBIA polygons.

A summary of the OBIA redd predictions derived from the Nano

data using Models 2–4 and 6–8 is provided in Figure 7. We evalu-

ated the sensitivity of OBIA predictions to the input redd probability

used, by varying the threshold between 0.1 and 0.9 in 0.1 incre-

ments, and found that consistently accurate OBIA results were

obtained using a threshold value equal to 0.8. For illustration, OBIA

results obtained using a redd probability threshold value of 0.8 is

shown in Figure 7.

The logistic regression-based redd predictions had accuracies

between 0.61 and 0.75 and correctly identified between 81 and 86%

of field-surveyed redds. Incorrect OBIA redd predictions occurred in

several non-redd locations containing shallow water and patches of

clean gravel, with the greatest number of incorrectly predicted redds

obtained using the eight-band image (Figure 7a). The logistic regres-

sion model developed using the eight-band image, depth and ch ratio

as input provided the best overall OBIA results of the three logistic

models evaluated in this study (Figure 7c).

The SVM-based redd predictions had accuracies between 0.65

and 0.86 and correctly identified between 81 and 86% of the field-

mapped redds, with the full model providing the best overall results

(Figure 7f). OBIA redd predictions made using the SVM models as

input had fewer misclassified redds than the logistic regression

models. The full model including eight-band imagery, depth, and ch

ratio values, combined with the SVM classifier did not have any mis-

classified redds, although it did omit three redds located on the north-

western margin of the mid-channel island (Figure 7f). These three

redds were omitted by all six models and were smaller in areal extent

and darker than the other field-mapped redds, suggesting that they

may have been partially completed redds during the time of our field

surveys. Of the six models evaluated, the full SVM model provided

the best overall results (Figure 7f), with an accuracy of 0.86.

TABLE 2 Comparison of redd classification performance using logistic regression and SVM classifiers

Model Platform Sensor Candidate model Classifier Accuracy Precision Recall

1 M210 Zenmuse X4S RGB bands Logistic regression 0.76 0.73 0.77

2 M600 Nano-Hyperspec 8-band Logistic regression 0.98 0.96 1.00

3 M600 Nano-Hyperspec 8-band, depth Logistic regression 0.95 0.97 0.94

4 M600 Nano-Hyperspec 8-band, depth, ch ratio Logistic regression 0.95 0.96 0.94

5 M210 Zenmuse X4S RGB bands SVM 0.76 0.83 0.73

6 M600 Nano-Hyperspec 8-band SVM 0.95 1.00 0.91

7 M600 Nano-Hyperspec 8-band, depth SVM 0.97 0.97 0.97

8 M600 Nano-Hyperspec 8-band, depth, ch ratio SVM 0.97 0.99 0.95
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4 | DISCUSSION

4.1 | Advantages and limitations of spectrally
based redd mapping

Understanding where adult salmon choose to spawn is essential for

improving management and recovery of endangered salmon (Malcolm,

Gibbins, Soulsby, Tetzlaff, & Moir, 2012). Given the limitations of

traditional field-based approaches for redd mapping, a compelling need

exists to develop remote sensing methods that are capable of detecting

salmon redds and can be integrated with other geospatial data sets that

describe physical habitat conditions. In this study we developed a semi-

automated workflow for identifying redds using remotely sensed data

acquired from small UAS. We used UAS-based RGB and hyperspectral

imagery, ground surveyed redd locations, and measured water depths

and field spectra to test redd classification approaches along a large,

F IGURE 7 Predicted OBIA redd locations using eight spectral bands (a, d), eight spectral bands with depth (b, d) and eight spectral bands,
depth, and chlorophyll (ch) absorption ratio (c, f), combined with logistic regression (top) and support vector machine learning (SVM) redd
probability maps (bottom). In each plot, blue points represent correctly predicted redd locations, dark orange points represent incorrect redd
predictions and light orange points represent locations where redds were mapped in the field but omitted by the OBIA. A scale bar is provided in
Figure 1 for reference [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 6 Example OBIA-derived redd polygons (black lines) overlain on redd probability maps for models (a) 6, (b) 7, and (c) 8 [Colour figure
can be viewed at wileyonlinelibrary.com]
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clear-flowing river. We then used OBIA to map the perimeter of individ-

ual redds in classified images. While previous studies have mapped

redds using UAS (Groves et al., 2016; Roncoroni & Lane, 2019), this is

the first investigation to assess different sensors and multiple semi-

automated classification techniques. Our redd mapping approach has

the advantage of being based on a single image, rather than requiring

two separate image acquisitions to produce a single map of redd loca-

tions (Roncoroni & Lane, 2019). In this study, the redd mapping

methods we developed were applied to a single point in time, but the

same approach also could be used with multiple images in a time series

to examine spatial and temporal changes in redd abundance throughout

the spawning season. Furthermore, this study demonstrated the poten-

tial for UAS-based redd mapping on a relatively large river, whereas

previous studies on riverine habitat mapping via UAS have been con-

ducted on smaller, shallow river channels (Dietrich, 2017; Roncoroni &

Lane, 2019; Tamminga et al., 2015). The redd mapping approach

developed here could be combined with other remote sensing data sets

characterizing physical habitat variables (e.g., grain size, water depth,

velocity, and temperature) across riverscapes to examine how salmon

use existing habitats and to test hypotheses on redd site selection.

The redd mapping technique described herein represents an

improvement over traditional redd mapping methods, as our approach

offers a continuous view of the river with near-hyperspatial (0.1 m or

smaller) pixel resolution. Image-based approaches provide a means of

rapidly surveying a given reach and obtaining precise redd locations

even in areas of the river that are too deep or swift to wade safely

(Abt, Wittier, Taylor, & Love, 1989). Remotely acquired imagery also

allows redds to be delineated without any direct physical contact,

which is advantageous for mapping sensitive locations, such as salmon

spawning sites. The fine resolution provided by the UAS imagery

enabled detection of small-scale features that might be missed by

other types of commonly used remote sensing data. For example, mul-

tispectral satellite data have been used to successfully map water

depths on large rivers (Hugue et al., 2016; Legleiter & Harrison, 2019),

but the lower spatial resolution typical of sensors like WorldView-3

(�2 m) would likely be too coarse to identify individual redds. Multi-

spectral or hyperspectral imagery obtained from manned aircraft

could be acquired with smaller pixel sizes (�0.5 m) and could facilitate

increasing the spatial extent of redd mapping in future applications.

Our study demonstrated the utility of a semi-automated mapping

approach that represents an improvement over previous methods,

which rely on visual interpretation of remotely sensed imagery

(Geist & Dauble, 1998; Groves et al., 2016). The most accurate classi-

fications were produced from the hyperspectral imagery, while the

RGB imagery evaluated in this study was not conducive to semi-

automated classification. The inability of the RGB sensor to detect

redds using logistic regression or SVM classifiers was somewhat sur-

prising because redds could often be seen visually in the RGB images

as areas substantially brighter than surrounding undisturbed sub-

strates. The poor redd detection performance might be due to the low

spectral resolution of the RGB sensor, which also might have limited

the utility of these data for OBRA-based depth mapping. The hyper-

spectral sensor provided highly accurate predictions of redd locations,

with accuracies greater than 0.9 for both logistic regression and SVM

classifiers (Table 2), even when using a small, resampled eight-band

subset of the 252 spectral bands available. Redd detection accuracies

were greatest using the spectral bands in combination with derived

water depth and ch ratio rasters as predictors.

We found that the full model, combined with the SVM classifier,

provided the best results for OBIA-based redd delineation and a sum-

mary of this workflow is shown in Figure 8. Identifying redds based

on visual interpretation of imagery alone (Figure 8a) may be challeng-

ing and redd detection was improved through the addition of water

depth (Figure 8b), ch ratio (Figure 8c), and redd probability maps

(Figure 8d). The water depth maps were able to identify redds to some

degree, as depicted in the zoom panel of Figure 8b, where redds can

be seen as deeper depressions relative to the surrounding shallow

water. We found that the redd probability map closely reflected

the ch ratio values at mapped redds, as shown in the zoom plots of

Figure 8c,d. The ch ratio maps also identified a number of redds

that were in the process of being constructed in the main channel

(Figure 8c), though had not been completed during our field surveys.

The main strength of the OBIA approach was in detecting salmon

redds with a high degree of confidence. The OBIA redd polygons

were useful for filtering out small (less than 2 m2) isolated clusters of

non-redd image pixels, which improved overall classification perfor-

mance. OBIA-based redd predictions were sensitive to the redd prob-

ability threshold used, with higher threshold probabilities resulting in

improved accuracy metrics. However, using higher threshold probabil-

ities also resulted in smaller predicted redd polygon areas. These

results suggest that using a higher threshold probability (�0.8) would

result in improved accuracy for estimating the total number of redds

in a given reach, whereas using a lower redd probability (�0.5) would

likely produce improved estimates of the area of individual redds.

During our field surveys, we observed fish actively spawning on many

of the redds we identified. For this reason, we did not survey detailed

redd perimeters and thus do not have the data required to evaluate

the potential for using OBIA to derive redd areas.

Despite being less useful for semi-automated redd classification, the

RGB imagery still played a valuable role in the overall redd mapping

workflow. The RGB imagery required roughly an order of magnitude less

post-processing time, had better horizontal accuracies, and served as a

base map for geo-referencing the Nano orthoimage. Given the ease of

collecting and post-processing the RGB imagery, this type of data might

be more suitable for generating a time series of daily or weekly redd

counts throughout the spawning season, despite the potential short-

comings of using the imagery in the semi-automated workflow tested

here. Using a combination of RGB imagery and hyperspectral imagery, in

conjunction with the machine learning workflow developed in this study,

would provide an effective means for salmon redd mapping in future

applications. Our study also demonstrated the redd mapping potential

provided by eight spectral bands, which we resampled from the original

252-band hyperspectral imagery. In future applications, a more cost-

effective alternative could be to use a multispectral sensor deployable

from a UAS. Data from such an instrument could potentially be used to

identify redds using the general workflow developed in this study.
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In practice, a number of issues could make spectrally based

remote sensing of salmon redds challenging. For example, fall-run

Chinook salmon spawn in the American River between November

through December at a time when sun angles are low, which might

result in shadows along channel margins (Figure 8a). In our study,

the effect of shadows was most evident in the depth maps, where

the presence of shadows along shallow channel margins led to over-

prediction of water depths due to the lower reflectance values typi-

cal of deeper water. Because the American River channel was

(�100 m) wide, shadows did not significantly affect the overall redd

predictions made in this study, but shadows might be more problem-

atic along narrower river channels with dense riparian canopy. The

relatively low amount of incident sunlight (i.e., downwelling spectral

irradiance) at the time of year when salmon spawn presented

another challenge, as lower levels of incident solar energy lead to

lower amounts of reflected radiation and thus reduced signal-to-

noise ratios in the image data. In our study, we addressed this issue

to some degree by flying at a lower height above ground level and

decreasing the flight speed of the UAS to allow for a greater image

exposure time. While these flight parameters prolonged the duration

of the UAS-based image acquisition, the ability to make such adjust-

ments to the flight plan is an important advantage of UAS relative to

traditional manned aircraft. UAS allow for greater flexibility in flight

planning due to their ability to fly at lower altitudes and use custom-

ized flight speeds based on the requirements of a specific project

and the environmental conditions at the time of data collection. In

addition, UAS deployment also can be more opportunistic than

manned aircraft flights, enabling remotely sensed data collection to

commence as soon as spawning salmon are observed within the

river of interest.

4.2 | Future research

Our work could be extended by integrating other types of remotely

sensed data with our redd detection framework to test hypotheses

on the physical controls governing salmon redd site selection. While

the life-history requirements for spawning salmon have been widely

studied, uncertainty persists as to the primary controls on salmon

spawning habitat preferences (Lapointe, 2012; Sear, DeVries, &

Greig, 2008). For example, water depth preferences of spawning

salmon could be quantified by extracting water depths at mapped

redd locations from OBRA-based depth maps. Similarly, surface flow

velocities derived via particle image velocimetry (PIV) of thermal imag-

ery (Legleiter, Kinzel, & Nelson, 2017) could help to define spawning

velocity preferences. UAS-based methods for identifying submerged

substrates (Danhoff & Huckins, 2020) and hyporheic exchanges (Pai

et al., 2017) also are emerging and could be integrated with our redd

mapping approach to further evaluate factors influencing salmon

spawning preferences.

F IGURE 8 UAS-based redd mapping workflow, including (a) imagery with mapped redd locations (b) depth map, (c) ch ratio and (d) resulting
redd probability map and object-based redd polygons. A scale bar is provided in Figure 1 for reference [Colour figure can be viewed at
wileyonlinelibrary.com]
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Future applications could also use UAS-based, hyperspectral

imagery to derive bathymetry and merge this data with topography

on dry land to develop continuous digital terrain models (DTMs), simi-

lar to prior studies using remote sensing data obtained from manned

aircraft (Legleiter, 2012). The DTM could then be used as a boundary

condition for developing two-dimensional (2D) flow models to predict

water depths and velocities, as done in prior work on a wide, shallow

river channel using RGB imagery and SfM techniques (Tamminga

et al., 2015). The combination of image-based redd mapping and 2D

flow modelling could greatly improve our understanding of the con-

trols on redd site selection by quantifying salmon utilization of natural

and restored habitats.

The methods developed in this study provide a means to charac-

terize salmon spawning preferences at intermediate spatial scales

(tens of meters to several kilometres), which has been identified as a

highly relevant scale for understanding interactions between fish and

their environment (Fausch et al., 2002). However, the potential for

UAS-based redd mapping has not yet been demonstrated at the larger

river segment scale, such as the annual redd census conducted over

�30 km of the lower American River. One of the major hurdles for

moving beyond reach-scale redd mapping using UAS in the United

States is that the platform must be within visual line of sight of the

UAS pilot during operations, due to Federal Aviation Administration

(FAA) regulations. Redd sampling over larger spatial extents using

UAS platforms could proceed by randomly sampling locations from

within a larger river corridor and conducting focused redd mapping at

those sites (Groves et al., 2016). Chinook salmon tend to spawn in the

same locations each year (Klett, Torgersen, Henning, & Murray, 2013),

and thus prior knowledge of existing spawning locations could be used

to identify potential UAS study reaches within the river corridor. Redd

mapping over longer reaches also could be achieved by deploying the

UAS from a series of locations along the river and assembling an image

mosaic composed of data from several different flights. For example, a

boat could be used to transit between bars from which the UAS could

be launched. UAS-based redd mapping potentially could be conducted

at broader spatial scales via beyond visible line of sight operations,

though these require special FAA waivers.

Until the regulatory process for UAS operations advances, redd

mapping using a hybrid approach with aerial imagery obtained

from manned aircraft at river segment scales (tens of km) and UAS

collected at reach scales could be a promising option. Acquisition

of UAS imagery at several sites, collected at the same time as the

manned aircraft flights could help improve the redd mapping accu-

racy over larger spatial extents, where the UAS imagery could provide

a means to validate redds mapped from the imagery acquired from

manned aircraft. The machine learning classification and object

detection approaches used here could also be tested on manned air-

craft imagery in an attempt to automate redd detection over larger

spatial scales and reduce potential errors made by visual redd map-

ping from the imagery. Scaling up the redd mapping workflow and

integrating UAS imagery with other traditional remote sensing data

sets for the purpose of identifying salmon redds remains a priority for

future research.

5 | CONCLUSIONS

Our study found that both UAS-based RGB and hyperspectral imag-

ery could be used to identify salmon redds along a large, clear-flowing

river, but with varying degrees of accuracy. Salmon redds were visible

in the RGB imagery and could be manually counted, similar to tradi-

tional visual approaches for redd mapping using photography acquired

from manned aircraft. The RGB imagery evaluated in this study was

ineffective at mapping complementary habitat information, such as

water depth and was less suitable for the machine learning classifica-

tion approaches tested here. The hyperspectral imagery provided

improved accuracy in the overall redd detection and was effective in

delineating individual redds via OBIA. Each system had advantages

and limitations in terms of the overall accuracy of redd identification

and the time required to post-process the data. The RGB sensor

required considerably less post-processing time and provided highly

accurate spatial positioning, compared to the hyperspectral imagery,

suggesting that it might be more suitable for rapid data acquisition or

collection of longer time-series imagery data sets. The hyperspectral

imagery was able to identify individual redds and effectively map river

bathymetry on a large river, therefore providing a potential tool

for quantifying both in-stream habitat and the behaviour of spawning

salmon. The ability to simultaneously map salmon spawning locations

and quantify selected habitat using hyperspectral imagery could facili-

tate future research aimed at understanding how salmon use and

interact with their environment across a range of spatial scales. Such

knowledge is key for effective management of salmon populations

and for evaluating natural and restored river functionality.
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